Math 8 Homework 1

Directions: Homework should be nicely written with attention to presentation and readability. Remember, somebody is reading your work!

1 Logical Statements

(a) Write the following statement using logical connectives $(\exists, \Rightarrow$, etc $)$.

For any subset S of the real numbers, S is compact if and only if it is closed and bounded.
What can we deduce about a set S which is not compact?
(b) A real-valued function f defined on the real numbers is called uniformly continuous if and only if

For every $\epsilon>0$ there is a $\delta>0$ so that for any real x, y which satisfy $|x-y|<\delta$, it follows that $|f(x)-f(y)|<\epsilon$.
Rewrite this definition using logical connectives and give a precise definition of what it means for a function not to be uniformly continuous.
(c) Lagrange's theorem says that if H is a subgroup of G then the size of H divides the size of G. Which of the following are generally true?
(i) If H is a subgroup of G and has size 14, then the size of G is even.
(ii) If G is has size 32 , then any subgroup has an even size.
(iii) If G has size 12 then there is a subgroup H of size 6 .

2 Direct and Contradiction Proof

(a) Let n be an integer. Prove that n is even if and only if n^{2} is even.
(b) Prove that $\sqrt{2}$ is irrational.
(c) Prove or disprove: the sum of two irrationals is irrational.
(d) Prove there exist irrational numbers x, y so that x^{y} is rational. Hint: start by thinking about $\sqrt{2}$; oddly enough, your final proof probably won't identify what the numbers x and y are!
(e) The following proof that $\sqrt{6}+\sqrt{2}<4$ is invalid:

Squaring both sides of $\sqrt{6}+\sqrt{2}<4$ gives $6+2 \sqrt{12}+2<16$, which rearranges into $\sqrt{12}<4$.
Squaring this gives $12<16$, which is true.
Explain why this proof is invalid and provide a correct proof.

3 Quantifiers

In some of the following problems, you might want to use this theorem from calculus:
Theorem (Intermediate Value). Let f be a continuous function on $[a, b]$. Suppose that $x, y \in[a, b]$ are given, with $f(x) \leq f(y)$. Then given any z so that $f(x) \leq z \leq f(y)$ there is a point c between x and y so that $f(c)=z$.
(a) Prove there is a number c in $(0,1)$ so that $(1-c) \cos c=\sin c$.
(b) A continuous function f satisfies $f(0)=f(2)$. Prove there is a number c for which $f(c+1)=f(c)$.
(c) Prove that for every $\epsilon>0$ there exists $N \in \mathbb{N}$ so that whenever $n>m \geq N$ it follows that $1 / m-1 / n<\epsilon$.
(d) Disprove the following: for every positive integer n, the integer $n^{2}+n+41$ is prime.
(e) Let f be a differentiable function on $[0,4]$. Prove there is a point c for which $f^{\prime}(c)<1+f(c)^{2}$.

